Simple logistic regression

Dr Wan Nor Arifin

Unit of Biostatistics and Research Methodology,

Universiti Sains Malaysia.
E-mail: wnarifin@Qusm.my

Wan Nor Arifin, 2015. Simple logistic regression by Wan Nor Arifin is li-
censed under the Creative Commons Attribution-ShareAlike 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/4.0/.



Contents

1 Objectives

2 Linear vs logistic for dichotomous outcome
3 Logistic regression model

4 Relative risk vs odds ratio

5 Logit transformation

6 Maximum likelihood estimation method

7 Determining the significance of the variables
7.1 Likelihood ratio test, G . . . . . . .. .. .. ... ... ... ..
7.2 Wald test, W . . . . .. . .

8 Hands on in SPSS
9 Hands on in R

References



1 Objectives

1. Understand the reasoning behind the move from linear regression model
to logistic regression model for dichotomous outcome.

2. Identify logistic regression model formula.
. Understand the concept of odds ratio.

. Identify logit transformation function formula.
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. Understand how odds ratio is calculated from a logistic regression model
and interpret the odds ratio.

6. Understand how a logistic regression model is fit by maximum likelihood
estimation method.

7. Understand how to test significance of the coefficients.

8. Fit the logistic regression model on an example data in SPSS and R. soft-
ware — dichotomous and continuous independent variables.

2 Linear vs logistic for dichotomous outcome

In place of a numerical outcome, y in linear regression model, now we have
a categorical outcome with two levels (yes/no, disease/no disease) coded as
0/1. Let us review back the linear regression model. Expected value of y, or
conditional mean of y given x is

EY|x)=a+ pz

where the conditional mean should be 0 < E(Y|x) < 1. But as « ranges between
—00 to +00, it is impossible to keep both sides equal. Thus we need a different
model for dichotomous outcome, an alternative is logistic regression model.

3 Logistic regression model

A logistic regression model is given as

z=a+ px
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A good thing about this model is that, now we can keep 0 < E(Y|z) <1, i.e
the probability of having a disease, p is between 0 to 1. Before delving further
into the logit transformation function that has a desirable use for epidemiologist,
we need to understand the concept of odds and odds ratio.




4 Relative risk vs odds ratio

Consider Table 1 for a cohort study of relationship between smoking (exposure)
and lung cancer (outcome).

Table 1: Lung cancer vs smoking

Lung cancer No lung cancer
Smoking 20 12
No smoking 95 73

Compare it to Table 2 for a case-control or cross-sectional study between
lung cancer and smoking.

Table 2: Smoking vs lung cancer

Smoking No smoking
Lung cancer 20 95
No lung cancer 12 73

For Table 1, we are able to calculate relative risk of developing lung cancer
for smoker vs non-smoker for the cohort study.
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However, for Table 2, it is inappropriate to calculate relative risk due to the
study design (revise back your knowledge in epidemiology on causality). In this
situation, we may calculate odds and odds ratio.
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We notice here that this value approximates the relative risk. If we calculate
the odds ratio for the cohort study as below
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which is the odds ratio calculated for Table 2. Note that the value is slightly
different due to rounding error.
The use of odds ratio is appealing because it is easily applicable for all the
study designs. In addition, in relation to the logistic regression model, odds
ratio can be obtained from the model based on the relevant coefficients.

=1.281

5 Logit transformation

By applying a logit link function on the basic logistic regression formula above,
it allows calculation of the odds and subsequently the odds ratio. The function
is linear and can range from —oo to +o0.

logit(p) = In (%)
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thus

logit(p) = a + Bz

is the In(odds). However, in the current form, it not really useful. What we
need is the odds ratio.
Odds ratio, OR when z = 0,1
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OR, when z is continuous numerical variable e.g. age
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where 1 and x( are any two values of x. As we are most interested in change
or difference between the values, A = x1 — x¢

OR = &2

or for 1 unit change in x
OR =¢°

which is same formula applied when x is binary.

6 Maximum likelihood estimation method

Linear regression model uses ordinary least squares (OLS) estimation method
to obtain values of a and 8 that minimize sum of squared deviations of the
observed values of Y from the ones predicted by the model.

However, for a nonlinear model like logistic regression model, OLS cannot
be used. Instead, maximum likelihood (ML) estimation method can be used to
estimate the unknown parameters « and .

In ML estimation method, a likelihood function {(#) that indicates the like-
lihood of observing the data for a set of unknown parameters § = «,f3, is
specified.

n
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or in form of log likelihood
L(0) = In[l(0) :Z {yiln[p(z:)] + (1 — yi)In[L — p(z:)]}

ML estimators # that maximize In[l(6)] is then found iteratively by computer
software as it is complicated to solve the equation by usual means.
As an example, using the data in Table 2,

1(0) = p(1)* x [1 = p(1)]" x p(0)** x [1 = p(0)]"

7 Determining the significance of the variables

7.1 Likelihood ratio test, G

G = —2[loglikelihood model without x variable—log likelihood model with x variable]

G =—2(Lo— Ly)

then the P-value is P[x?(1) > GJ], as G follows chi-square distribution. The
degrees-of-freedom, df = v i.e. difference in number of parameters between the
models.



Alternatively, as it is given as -2 log likelihood in SPSS, or deviance D,

7.2

G = D(model without x variable) — D(model with x variable)

G =Dy — Dy
Wald test, W

BA

W=—
SE(B)

then the two-tailed P-value is P(|z| > W), as W follows standard normal dis-
tribution. It is more suitable for testing a single variable.

8 Hands on in SPSS

Dataset: slog.sav (modified from a dataset, courtesy of AP Dr. Kamarul Imran

Musa)

Dependent variable (DV): cad (1: Yes, 0: No)

Independent variables (IV): categorical — gender (1: Male, 0: Female), nu-

merical — sbp (systolic blood pressure)

Steps:

1.

2.

From the menu, Analyze — Regression — Binary Logistic...

In Logistic Regression window, Dependent: cad, Covariates: gen-
der.

Click on Categorical... button. In the window, place gender under
Categorical Covariates:. Under Change Contrast, choose First as
Reference Category: and click on Change button. Click on Continue
button.

Click on Options... button. In the window, choose Iteration history
and CI for exp(B). Click on Continue button.

Click OK button.

Repeat the same steps for sbp.



9 Hands on in R

data = read.csv("slog.csv")

# gender, categorical

table(gender=2-data$gender, cad=2-data$cad)

lreg = glm(cad ~ gender, data = data, family = binomial(link = "logit"))
summary (1lreg)

cbind(coef (1reg), confint(lreg))

exp(cbind(coef (lreg), confint(lreg)))

# sbp, numerical

lregl = glm(cad ~ sbp, data = data, family = binomial(link = "logit"))
summary (1regl)

cbind(coef (1regl), confint(lregl))

exp(cbind (coef (lregl), confint(lregl)))

# an increase in 10mmHg in sbp
exp(cbind(coef (1regl) [[2]1%10, confint(lregl) [[2]]1%10, confint (lregl) [[4]11%10))

References

Bartholomew, D. J., Steele, F., Moustaki, I., and Galbraith, J. I. (2008). Anal-
ysis of multivariate social science data. USA: CRC Press.

Hosmer, D. and Lemeshow, S. (2000). Applied logistic regression (2nd eds).
Wiley Series in Probability and Statistics. USA: John Wiley & Sons, Inc.

Kleinbaum, D. and Klein, M. (2002). Logistic regression: A self-learning text
(2nd eds). Statistics for Biology and Health. USA: Springer New York.



