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1 Obje
tives

1. Understand the reasoning behind the move from linear regression model

to logisti
 regression model for di
hotomous out
ome.

2. Identify logisti
 regression model formula.

3. Understand the 
on
ept of odds ratio.

4. Identify logit transformation fun
tion formula.

5. Understand how odds ratio is 
al
ulated from a logisti
 regression model

and interpret the odds ratio.

6. Understand how a logisti
 regression model is �t by maximum likelihood

estimation method.

7. Understand how to test signi�
an
e of the 
oe�
ients.

8. Fit the logisti
 regression model on an example data in SPSS and R soft-

ware � di
hotomous and 
ontinuous independent variables.

2 Linear vs logisti
 for di
hotomous out
ome

In pla
e of a numeri
al out
ome, y in linear regression model, now we have

a 
ategori
al out
ome with two levels (yes/no, disease/no disease) 
oded as

0/1. Let us review ba
k the linear regression model. Expe
ted value of y, or


onditional mean of y given x is

E(Y |x) = α+ βx

where the 
onditional mean should be 0 ≤ E(Y |x) ≤ 1. But as x ranges between
−∞ to +∞, it is impossible to keep both sides equal. Thus we need a di�erent

model for di
hotomous out
ome, an alternative is logisti
 regression model.

3 Logisti
 regression model

A logisti
 regression model is given as

z = α+ βx

E(Y |x) = P (Y = 1|x) = p =
ez

1 + ez
=

eα+βx

1 + eα+βx

A good thing about this model is that, now we 
an keep 0 ≤ E(Y |x) ≤ 1, i.e
the probability of having a disease, p is between 0 to 1. Before delving further

into the logit transformation fun
tion that has a desirable use for epidemiologist,

we need to understand the 
on
ept of odds and odds ratio.
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4 Relative risk vs odds ratio

Consider Table 1 for a 
ohort study of relationship between smoking (exposure)

and lung 
an
er (out
ome).

Table 1: Lung 
an
er vs smoking

Lung 
an
er No lung 
an
er

Smoking 20 12

No smoking 95 73

Compare it to Table 2 for a 
ase-
ontrol or 
ross-se
tional study between

lung 
an
er and smoking.

Table 2: Smoking vs lung 
an
er

Smoking No smoking

Lung 
an
er 20 95

No lung 
an
er 12 73

For Table 1, we are able to 
al
ulate relative risk of developing lung 
an
er

for smoker vs non-smoker for the 
ohort study.

Risksmoking =
20

20 + 12
=

20

32
= 0.625

Riskno smoking =
95

95 + 73
=

95

168
= 0.565

Relative risk smoking

no smoking

=
0.625

0.565
= 1.106

However, for Table 2, it is inappropriate to 
al
ulate relative risk due to the

study design (revise ba
k your knowledge in epidemiology on 
ausality). In this

situation, we may 
al
ulate odds and odds ratio.

Oddslung cancer being smoker =
20

95
= 0.211

Oddsno lung cancer being smoker =
12

73
= 0.164

Odds ratio lung cancer being smoker

no lung cancer being smoker

=
0.211

0.164
= 1.287 ≈ 1.106

We noti
e here that this value approximates the relative risk. If we 
al
ulate

the odds ratio for the 
ohort study as below
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Odds ratio smoker with lung cancer

non smoker with lung cancer

=
20

12
÷

95

73
=

20 · 73

12 · 95
= 1.281

whi
h is the odds ratio 
al
ulated for Table 2. Note that the value is slightly

di�erent due to rounding error.

The use of odds ratio is appealing be
ause it is easily appli
able for all the

study designs. In addition, in relation to the logisti
 regression model, odds

ratio 
an be obtained from the model based on the relevant 
oe�
ients.

5 Logit transformation

By applying a logit link fun
tion on the basi
 logisti
 regression formula above,

it allows 
al
ulation of the odds and subsequently the odds ratio. The fun
tion

is linear and 
an range from −∞ to +∞.

logit(p) = ln

(

p

1− p

)

p =
ez

1 + ez

1− p = 1−
ez

1 + ez
=

1 + ez − ez

1 + ez
=

1

1 + ez

p

1− p
=

ez

1 + ez
÷

1

1 + ez
=

ez(1 + ez)

1 + ez
= ez

ln

(

p

1− p

)

= ln(ez) = z = α+ βx

thus

logit(p) = α+ βx

is the ln(odds). However, in the 
urrent form, it not really useful. What we

need is the odds ratio.

Odds ratio, OR when x = 0, 1

OR =

p1

1−p1

p0

1−p0

=
ez1

ez0
=

eα+β(1)

eα+β(0)
=

eα+β

eα
= eβ

OR, when x is 
ontinuous numeri
al variable e.g. age

OR =
eα+βx1

eα+βx0

= eβ(x1−x0)
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where x1 and x0 are any two values of x. As we are most interested in 
hange

or di�eren
e between the values, ∆ = x1 − x0

OR = eβ∆

or for 1 unit 
hange in x

OR = eβ

whi
h is same formula applied when x is binary.

6 Maximum likelihood estimation method

Linear regression model uses ordinary least squares (OLS) estimation method

to obtain values of α and β that minimize sum of squared deviations of the

observed values of Y from the ones predi
ted by the model.

However, for a nonlinear model like logisti
 regression model, OLS 
annot

be used. Instead, maximum likelihood (ML) estimation method 
an be used to

estimate the unknown parameters α and β.

In ML estimation method, a likelihood fun
tion l(θ) that indi
ates the like-
lihood of observing the data for a set of unknown parameters θ = α, β, is

spe
i�ed.

l(θ) =

n
∏

i=1

p(xi)
yi [1− p(xi)]

1−yi

or in form of log likelihood

L(θ) = ln[l(θ) =
n
∑

i=1

{yiln[p(xi)] + (1− yi)ln[1− p(xi)]}

ML estimators θ̂ that maximize ln[l(θ)] is then found iteratively by 
omputer

software as it is 
ompli
ated to solve the equation by usual means.

As an example, using the data in Table 2,

l(θ) = p(1)20 × [1− p(1)]12 × p(0)95 × [1− p(0)]73

7 Determining the signi�
an
e of the variables

7.1 Likelihood ratio test, G

G = −2[log likelihoodmodelwithout x variable−log likelihoodmodelwith x variable]

G = −2(L0 − L1)

then the P -value is P [χ2(1) > G], as G follows 
hi-square distribution. The

degrees-of-freedom, df = v i.e. di�eren
e in number of parameters between the

models.
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Alternatively, as it is given as -2 log likelihood in SPSS, or devian
e D,

G = D(model without x variable)−D(model with x variable)

G = D0 −D1

7.2 Wald test, W

W =
β̂

ŜE(β̂)

then the two-tailed P -value is P (|z| > W ), as W follows standard normal dis-

tribution. It is more suitable for testing a single variable.

8 Hands on in SPSS

Dataset: slog.sav (modi�ed from a dataset, 
ourtesy of AP Dr. Kamarul Imran

Musa)

Dependent variable (DV): 
ad (1: Yes, 0: No)

Independent variables (IV): 
ategori
al � gender (1: Male, 0: Female), nu-

meri
al � sbp (systoli
 blood pressure)

Steps:

1. From the menu, Analyze → Regression → Binary Logisti
...

2. In Logisti
 Regression window, Dependent: 
ad , Covariates: gen-

der.

3. Cli
k on Categori
al... button. In the window, pla
e gender under

Categori
al Covariates:. Under Change Contrast, 
hoose First as

Referen
e Category: and 
li
k on Change button. Cli
k on Continue

button.

4. Cli
k on Options... button. In the window, 
hoose Iteration history

and CI for exp(B). Cli
k on Continue button.

5. Cli
k OK button.

6. Repeat the same steps for sbp.
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9 Hands on in R

data = read.
sv("slog.
sv")

# gender, 
ategori
al

table(gender=2-data$gender, 
ad=2-data$
ad)

lreg = glm(
ad ~ gender, data = data, family = binomial(link = "logit"))

summary(lreg)


bind(
oef(lreg), 
onfint(lreg))

exp(
bind(
oef(lreg), 
onfint(lreg)))

# sbp, numeri
al

lreg1 = glm(
ad ~ sbp, data = data, family = binomial(link = "logit"))

summary(lreg1)


bind(
oef(lreg1), 
onfint(lreg1))

exp(
bind(
oef(lreg1), 
onfint(lreg1)))

# an in
rease in 10mmHg in sbp

exp(
bind(
oef(lreg1)[[2℄℄*10, 
onfint(lreg1)[[2℄℄*10, 
onfint(lreg1)[[4℄℄*10))
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