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1 Objetives

1. Understand the reasoning behind the move from linear regression model

to logisti regression model for dihotomous outome.

2. Identify logisti regression model formula.

3. Understand the onept of odds ratio.

4. Identify logit transformation funtion formula.

5. Understand how odds ratio is alulated from a logisti regression model

and interpret the odds ratio.

6. Understand how a logisti regression model is �t by maximum likelihood

estimation method.

7. Understand how to test signi�ane of the oe�ients.

8. Fit the logisti regression model on an example data in SPSS and R soft-

ware � dihotomous and ontinuous independent variables.

2 Linear vs logisti for dihotomous outome

In plae of a numerial outome, y in linear regression model, now we have

a ategorial outome with two levels (yes/no, disease/no disease) oded as

0/1. Let us review bak the linear regression model. Expeted value of y, or

onditional mean of y given x is

E(Y |x) = α+ βx

where the onditional mean should be 0 ≤ E(Y |x) ≤ 1. But as x ranges between
−∞ to +∞, it is impossible to keep both sides equal. Thus we need a di�erent

model for dihotomous outome, an alternative is logisti regression model.

3 Logisti regression model

A logisti regression model is given as

z = α+ βx

E(Y |x) = P (Y = 1|x) = p =
ez

1 + ez
=

eα+βx

1 + eα+βx

A good thing about this model is that, now we an keep 0 ≤ E(Y |x) ≤ 1, i.e
the probability of having a disease, p is between 0 to 1. Before delving further

into the logit transformation funtion that has a desirable use for epidemiologist,

we need to understand the onept of odds and odds ratio.
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4 Relative risk vs odds ratio

Consider Table 1 for a ohort study of relationship between smoking (exposure)

and lung aner (outome).

Table 1: Lung aner vs smoking

Lung aner No lung aner

Smoking 20 12

No smoking 95 73

Compare it to Table 2 for a ase-ontrol or ross-setional study between

lung aner and smoking.

Table 2: Smoking vs lung aner

Smoking No smoking

Lung aner 20 95

No lung aner 12 73

For Table 1, we are able to alulate relative risk of developing lung aner

for smoker vs non-smoker for the ohort study.

Risksmoking =
20

20 + 12
=

20

32
= 0.625

Riskno smoking =
95

95 + 73
=

95

168
= 0.565

Relative risk smoking

no smoking

=
0.625

0.565
= 1.106

However, for Table 2, it is inappropriate to alulate relative risk due to the

study design (revise bak your knowledge in epidemiology on ausality). In this

situation, we may alulate odds and odds ratio.

Oddslung cancer being smoker =
20

95
= 0.211

Oddsno lung cancer being smoker =
12

73
= 0.164

Odds ratio lung cancer being smoker

no lung cancer being smoker

=
0.211

0.164
= 1.287 ≈ 1.106

We notie here that this value approximates the relative risk. If we alulate

the odds ratio for the ohort study as below
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Odds ratio smoker with lung cancer

non smoker with lung cancer

=
20

12
÷

95

73
=

20 · 73

12 · 95
= 1.281

whih is the odds ratio alulated for Table 2. Note that the value is slightly

di�erent due to rounding error.

The use of odds ratio is appealing beause it is easily appliable for all the

study designs. In addition, in relation to the logisti regression model, odds

ratio an be obtained from the model based on the relevant oe�ients.

5 Logit transformation

By applying a logit link funtion on the basi logisti regression formula above,

it allows alulation of the odds and subsequently the odds ratio. The funtion

is linear and an range from −∞ to +∞.

logit(p) = ln

(

p

1− p

)

p =
ez

1 + ez

1− p = 1−
ez

1 + ez
=

1 + ez − ez

1 + ez
=

1

1 + ez

p

1− p
=

ez

1 + ez
÷

1

1 + ez
=

ez(1 + ez)

1 + ez
= ez

ln

(

p

1− p

)

= ln(ez) = z = α+ βx

thus

logit(p) = α+ βx

is the ln(odds). However, in the urrent form, it not really useful. What we

need is the odds ratio.

Odds ratio, OR when x = 0, 1

OR =

p1

1−p1

p0

1−p0

=
ez1

ez0
=

eα+β(1)

eα+β(0)
=

eα+β

eα
= eβ

OR, when x is ontinuous numerial variable e.g. age

OR =
eα+βx1

eα+βx0

= eβ(x1−x0)
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where x1 and x0 are any two values of x. As we are most interested in hange

or di�erene between the values, ∆ = x1 − x0

OR = eβ∆

or for 1 unit hange in x

OR = eβ

whih is same formula applied when x is binary.

6 Maximum likelihood estimation method

Linear regression model uses ordinary least squares (OLS) estimation method

to obtain values of α and β that minimize sum of squared deviations of the

observed values of Y from the ones predited by the model.

However, for a nonlinear model like logisti regression model, OLS annot

be used. Instead, maximum likelihood (ML) estimation method an be used to

estimate the unknown parameters α and β.

In ML estimation method, a likelihood funtion l(θ) that indiates the like-
lihood of observing the data for a set of unknown parameters θ = α, β, is

spei�ed.

l(θ) =

n
∏

i=1

p(xi)
yi [1− p(xi)]

1−yi

or in form of log likelihood

L(θ) = ln[l(θ) =
n
∑

i=1

{yiln[p(xi)] + (1− yi)ln[1− p(xi)]}

ML estimators θ̂ that maximize ln[l(θ)] is then found iteratively by omputer

software as it is ompliated to solve the equation by usual means.

As an example, using the data in Table 2,

l(θ) = p(1)20 × [1− p(1)]12 × p(0)95 × [1− p(0)]73

7 Determining the signi�ane of the variables

7.1 Likelihood ratio test, G

G = −2[log likelihoodmodelwithout x variable−log likelihoodmodelwith x variable]

G = −2(L0 − L1)

then the P -value is P [χ2(1) > G], as G follows hi-square distribution. The

degrees-of-freedom, df = v i.e. di�erene in number of parameters between the

models.
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Alternatively, as it is given as -2 log likelihood in SPSS, or deviane D,

G = D(model without x variable)−D(model with x variable)

G = D0 −D1

7.2 Wald test, W

W =
β̂

ŜE(β̂)

then the two-tailed P -value is P (|z| > W ), as W follows standard normal dis-

tribution. It is more suitable for testing a single variable.

8 Hands on in SPSS

Dataset: slog.sav (modi�ed from a dataset, ourtesy of AP Dr. Kamarul Imran

Musa)

Dependent variable (DV): ad (1: Yes, 0: No)

Independent variables (IV): ategorial � gender (1: Male, 0: Female), nu-

merial � sbp (systoli blood pressure)

Steps:

1. From the menu, Analyze → Regression → Binary Logisti...

2. In Logisti Regression window, Dependent: ad , Covariates: gen-

der.

3. Clik on Categorial... button. In the window, plae gender under

Categorial Covariates:. Under Change Contrast, hoose First as

Referene Category: and lik on Change button. Clik on Continue

button.

4. Clik on Options... button. In the window, hoose Iteration history

and CI for exp(B). Clik on Continue button.

5. Clik OK button.

6. Repeat the same steps for sbp.

7



9 Hands on in R

data = read.sv("slog.sv")

# gender, ategorial

table(gender=2-data$gender, ad=2-data$ad)

lreg = glm(ad ~ gender, data = data, family = binomial(link = "logit"))

summary(lreg)

bind(oef(lreg), onfint(lreg))

exp(bind(oef(lreg), onfint(lreg)))

# sbp, numerial

lreg1 = glm(ad ~ sbp, data = data, family = binomial(link = "logit"))

summary(lreg1)

bind(oef(lreg1), onfint(lreg1))

exp(bind(oef(lreg1), onfint(lreg1)))

# an inrease in 10mmHg in sbp

exp(bind(oef(lreg1)[[2℄℄*10, onfint(lreg1)[[2℄℄*10, onfint(lreg1)[[4℄℄*10))
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